

Q1. A. Explain different types of addressing modes.

Answer.:- In computer architecture, addressing modes are used to define the process for

determining a data or instruction's memory address. There are several addressing modes, all

of which are intended to promote quick and flexible access to memory regions.

 Immediate Addressing Mode: In this mode, the instrucƟon explicitly specifies the operand

value. For literal values and constants, this is helpful.

 Direct Addressing mode: The address of the memory region where the data is stored is the

operand in the direct addressing mode. While simple and effecƟve, this mode has a limited

amount of RAM that is available.

 Indirect addressing mode: The operand in the indirect addressing mode is a memory region

containing the address of the actual data. This mode makes memory access more flexible

and is beneficial for data structures.

 Indexed Addressing Mode: In this mode, the operand's memory locaƟon is determined by

adding an index register to the base address. This mode is helpful for accessing data

structure or array items.

 Register Addressing Mode: In this mode, a register rather than a memory locaƟon is used to

hold the operand. While quick and effecƟve, this mode may have a limit on the amount of

RAM available.

 RelaƟve addressing mode: The operand in the relaƟve addressing mode is a signed

displacement value that has been added to the running programme counter. For branching

and looping processes, this mode is helpful.

 The best addressing mode to use depends on the particular needs of the application

being run. Each addressing mode has benefits and drawbacks of its own.

SET.:- 1

 System Software & DCA2203
 BCA 4TH SEMSESTER

The best addressing mode to use depends on the particular needs of the application

being run. Each addressing mode has benefits and drawbacks of its own.

Parsing.:- is the process of examining a string of symbols or code in a computer language to

ascertain its grammatical structure in accordance with a set of rules or syntax. The goal of

parsing is to discover the code's fundamental structure and translate it into a format that a

computer can readily comprehend and process.

There are many reasons why parsing is important. First and foremost, it enables the computer

to comprehend the syntax and organizational structure of the code, which is essential for

accurate interpretation and execution. Second, it lets the computer to find mistakes and

inconsistencies in the code and provide the proper error messages for the user. Lastly, it may

be used to optimize the code for quicker and more effective execution.

There are several parsing algorithms, such as top-down and bottom-up parsing, as well as

distinct parsing methods, such recursive descent and shift-reduce parsing. Depending on the

kind of code being processed, each has different advantages and disadvantages and is used.

The term "parsing" refers to one of the most significant processes in the process of computer

programming. At this point, the computer is able to understand the syntax and structure of the

code, find faults and inconsistencies, and optimize the code so that it may be executed more

quickly and with more efficiency.

Q2. A. What is Assembler? Explain different types of Assemblers.

Answer.:- An assembler is a program that translates assembly language code into machine

code that can be executed by a computer. Assembly language is a low-level programming

language that uses mnemonics to represent machine instructions.

According to the particular requirements of the programmer , many kinds of assemblers may

be used.:-

 One-pass Assemblers: These assemblers just read the source code once, producing machine

code without the need for any intermediary files.

 With a two-pass assembler, the source code is read twice. It creates a symbol table and

determines the posiƟons of labels and variables in memory during the first iteraƟon. The

informaƟon acquired in the first pass is used to produce the machine code in the second.

 Macro Assemblers: These assemblers enable the usage of pre-defined sequences of

instrucƟons called macros that may be reused throughout the code.

 Cross Assembler: A cross assembler produces code for plaƞorms other than the one it is

currently execuƟng on. A cross-assembler, for instance, may produce code for an embedded

system operaƟng on a microcontroller when it is installed on a Windows computer.

 Integrated Development Environment (IDE) Assembler: An IDE is a comprehensive

environment for authoring, ediƟng, and debugging code. This kind of assembler is integrated

with an IDE.

Programming for computers requires the use of assemblers, particularly when creating

low-level systems like operating systems, device drivers, and firmware. They provide a

quick and effective means to translate assembly language code into computer executable

machine code, and the many assembler types offer flexibility and adaptation to various

programming requirements.

Q2. B. Explain various Data Structures used in Macro Processor
Design.

Answer.:- A programme called a macro processor is used in soŌware development to automate

the creaƟon of code. By enabling programmers to generate reusable code chunks, or macros, it is

intended to streamline and improve the efficiency of the coding process. Popular data structures

include.:-

 "Symbol Table" is used to keep track of the names and values of symbols used in macros. It

aids in locaƟng and resolving any symbol references present in the macro code.

 Macro DefiniƟon Table: This table is used to record the appropriate macro names as well as

the associated macro definiƟons. It aids in the resoluƟon of macro calls and their expansion

with the appropriate macro code.

 Argument Stack: During macro expansion, arguments are provided to macros and stored in

this stack. It helps in giving macro definiƟons dynamic values.

 Expansion Buffer: During macro expansion, this data structure is uƟlized to hold the

expanded macro code. By lowering the overhead of macro expansion, it aids in the efficient

producƟon of code.

 ASSEMBER
 ASSEMBLEY LANGUAGE

PROGRAM —————→

 OBJECT PROGRAM

—————→

 INFORMATION TO THE LOADER

 CondiƟonal compilaƟon tables are used to record data on the condiƟonal compilaƟon

clauses that are used in macros. They provide effecƟve condiƟonal statement handling

during macro expansion.

 The input text stream that is read by the macro processor is stored in this buffer. It aids in the

text input being processed effecƟvely.

 The output text stream produced by the macro processor is stored in this buffer, which is

called the output buffer. It aids in the producƟon of effecƟve results.

Due to their assistance in the effecƟve handling and processing of macros, these data

structures are essenƟal to the design of macro processors. They make it possible to write

reusable secƟons of code and facilitate the simplificaƟon of the programming process. The

programming language being used, and the unique requirements of the macro processor

architecture influence the choice of data structures.

Q3.A. Explain program relocation concepts in detail.

Answer.:- The concept of "programme relocaƟon" is used to alter the memory address

references in a programme when it is loaded into a memory locaƟon different than the one in

which it was meant to run. This is necessary because programmes are oŌen created using

absolute memory addresses that assume a certain posiƟon in memory. If the programme is

loaded into a different locaƟon, those absolute addresses will no longer be acceptable. For the

programme to operate correctly at the new memory locaƟon, these addresses must be

adjusted during relocaƟon.

Most of the Ɵme, the relocaƟon process is executed when a programme is loaded into memory

by the operaƟng system loader. In order to determine which addresses need modificaƟon, the

loader examines the program's code and data segments. It then performs the appropriate

MACRO PRE-PROCESSOR ASSEMBLER

PROGRAM WITHOUT MACRO

PROGRAM WITHOUT MACRO

DEFINITIONS AND CALL

TARGET PROGRAM

adjustments. This allows the programme to access the correct memory areas regardless of

where it is stored in memory.

There are several different types of relocaƟon that may be done, including absolute relocaƟon,

relaƟve relocaƟon, and base relocaƟon. Absolute relocaƟon involves altering absolute

addresses in the program's code and data segments. Modifying addresses that are relaƟve to

a certain memory locaƟon, such as a base address, is what relaƟve relocaƟon implies. Base

relocaƟon moves addresses in relaƟon to a base address that is soŌware-specific.

Q3.B. Describe Compiler. Explain different phases of compilation.

Answer.:- A soŌware known as a compiler converts high-level programming languages

into machine languages. It goes through a number of steps to transform the source code

into a machine-executable format, including lexical analysis, syntax analysis, semanƟc

analysis, code creaƟon, and opƟmizaƟon.

The following are the different phases of compilation:

 Lexical Analysis: The lexical analysis, someƟmes referred to as scanning, is the iniƟal stage of

compilaƟon. At this stage, specific tokens including keywords, idenƟfiers, operators, and

literals are recognised by reading and analysing the source code.

 SemanƟc Analysis: The third stage of compilaƟon is semanƟc analysis. This step checks the

AST created in the preceding phase for semanƟc correctness, making sure that variable types

are accurate and consistent, that funcƟons and procedures are called accurately, and that

the code complies with the semanƟcs of the language.

 Intermediate Code GeneraƟon: The fourth stage of compilaƟon is intermediate code

generaƟon. The AST created in the preceding step is transformed into an intermediate

representaƟon, such three-address code, in this phase.

 Code OpƟmizaƟon: The fiŌh stage of compilaƟon is code opƟmizaƟon. To enhance the

performance of the final machine code, the intermediate code created in the previous step is

examined and opƟmised in this phase.

 Code GeneraƟon: The last stage of compilaƟon is code generaƟon, when the opƟmised

intermediate code is converted into machine code for a parƟcular target plaƞorm. Thisentails

 ASSEMBER
 SOURCE

PROGRAM —————→

 OBJECT PROGRAM

—————→

producing assembly language or machine code that the computer's processor may use

directly.

Q4.A. Differentiate between Line editors and Stream editors.

Answer.:- Text files may be edited using line editors and stream editors, two different

kinds of text editors. Their methods and skills vary, however. The following are the variations

between line editors and stream editors.:-

 Interface.:- Line editors provide a command-line interface via which users may

communicate with the editor by inputting instructions, to which the editor reacts by

altering the text file. Stream editors, in contrast, provide a non-interactive interface

where users give a series of instructions in a script, and the editor performs them on

the text file.

 Text Manipulation.:- Line editors let users edit a text file one line at a time. By

employing line-oriented commands, users may modify, remove, or add lines. On the

other hand, stream editors work on the full text file, applying a set of rules or

transformations to the input stream and producing the updated output stream.

 Flexibility.:- Line editors are more versatile than stream editors because they let users

interact with the text file and are better suited for making modest changes to the file.

Stream editors, on the other hand, are better suited for batch processing, when the

same set of alterations must be done to several files.

Q4.B. Explain the basic building blocks of an UPnP enabled
network.

A. Answer.:- Devices may connect to one another and communicate without a human

setup thanks to a group of networking protocols known as Universal Plug and Play (UPnP).

A UPnP network is made up of these components:

An item of hardware or soŌware known as a control point locates and controls UPnP

devices on a network. It is capable of searching for objects, learning about their

capabiliƟes, and controlling their behaviour. A control point might be a computer, tablet,

or phone running UPnP control soŌware.

SET.:- 2

A UPnP control point can manage and control a piece of hardware known as a UPnP

device. Routers and smart home appliances like thermostats and security cameras are

examples of UPnP devices.

A UPnP device responds to requests from a control point and uses UPnP protocols to promote

its services and capabilities.

 Service.:- A UPnP device's soŌware component that offers a parƟcular capability or feature is

known as a service. A control point may transmit print jobs to a printer, for instance, if the

printer is a UPnP device. Several services that are each designated by a different service type

may be found on a UPnP device.

Discovery Protocol.:- UPnP devices and control points may find one another in a network using

the discovery protocol. The protocol makes use of the Simple Service Discovery Protocol

(SSDP) to send and receive messages across the network, enabling devices to inform the

network of their existence and funcƟonaliƟes.

 Control Protocol.:- A control point may use a collecƟon of rules and instrucƟons that are

collecƟvely referred to as the control protocol in order to guide the operaƟons of a UPnP

device. The control protocol enables the control point to provide instrucƟons to the device

and receive responses from the device via the exchange of messages between the two parƟes.

 Due to their assistance in the effecƟve handling and processing of macros, these data

structures are essenƟal to the design of macro processors. They make it possible to write

reusable secƟons of code and facilitate the simplificaƟon of the programming process. The

programming language being used, and the unique requirements of the macro processor

architecture influence the choice of data structures.

Q5. What is a device driver? Explain the role of device drivers in
terms of mechanism and policy?

With a piece of software called a device driver, an operating system may interact with and

control a specific piece of hardware, such as a network card, printer, or scanner. Serving as a

bridge between hardware and the operating system is the primary responsibility of a device

driver. They can effectively work together because of this.

Mechanism-based and policy-based functions for device drivers may be distinguished. The

precise method through which the device driver interacts with the operating system and

hardware is referred to as a mechanism. This includes tasks like resource allocation, interrupt

management, and sending and receiving data.

A device driver's policy incorporates a number of important factors. The first step is

addressing mistakes, which entails finding them and taking action. Timeouts, damaged data,

and hardware malfunctions are a few examples of this. The second factor is security, which

entails making sure the device driver runs safely and doesn't bring vulnerabilities into the

system. Data encryption, access control, and secure boot are a few examples of what falls

under this category. The third factor is performance optimization, which entails raising device

driver performance while lowering its demand on system resources. This may include

practises like buffer management, data compression, and traffic shaping.

The ability to allow communication between various kinds of hardware and software is one

of device drivers' distinctive qualities in computer networking. An example of a network card

device driver is a local area network (LAN) device driver, which enables a computer to

connect to it and interact with servers, printers, scanners, and other networked devices. A

printer device driver, which allows a computer to send print jobs to a specific printer

independent of the manufacturer or model of the printer, may offer functionality that is

analogous to that described above.

Device drivers may also provide complex functionality that is not available via the operating

system's built-in interfaces. A network card device driver, for instance, could include

sophisticated traffic shaping features that let the computer prioritise certain network traffic over

others. When the network is overcrowded or when certain types of traffic, such audio or video,

need to take precedence in order to retain the service's quality, this may be useful.

Q6.A. Write short notes on: (i) Worker threads (ii) Thread-safe
methods.

Answer.:- Important ideas like worker threads and thread-safe procedures are essenƟal

for maintaining effecƟve and secure communicaƟon between various nodes in a network.

 Application

 User Driver

Device Driver

User - Mode

Kernel- Mode

i. A sort of thread called a worker thread is employed in a soŌware to carry out certain

duƟes. Several tasks may be carried out simultaneously since they are generated by

the main thread and run separately from it. A server may manage numerous

connecƟons at once by using worker threads in networking to handle incoming

requests from mulƟple clients. The server's speed and responsiveness may be

considerably enhanced as a result of its increased ability to process requests

concurrently.

ii. On the other hand, thread-safe techniques are ones that provide concurrent access

and modificaƟon by many threads without risking conflicts or failures. The security

and integrity of data being sent between various network nodes are ensured in

networking through the use of thread-safe mechanisms. A data race may occur and

lead to unexpected behaviour, for instance, if two threads aƩempt to write to the

same memory region concurrently. Thread-safe techniques make sure that only one

thread at a Ɵme may access a certain resource by using synchronisaƟon mechanisms

like locks, semaphores, and mutexes to prevent this.

iii. worker threads and thread-safe techniques are criƟcal ideas in computer networking

that assist guarantee effecƟve and secure communicaƟon between various nodes in

a network.

Q6.B. What are the diverse types of memory in phones? List

some of the usages of memory of the android system.

Answer.:- Important ideas like worker threads and thread-safe procedures are

essenƟal for maintaining effecƟve and secure communicaƟon between various nodes in a

network.

 A sort of thread called a worker thread is employed in a soŌware to carry out certain duƟes.

Several tasks may be carried out simultaneously since they are generated by the main thread

 RAM

 RAM

 CPU

 GPU

 STORAGE

and run separately from it. A server may manage numerous connecƟons at once by using

worker threads in networking to handle incoming requests from mulƟple clients. The server's

speed and responsiveness may be considerably enhanced as a result of its increased ability

to process requests concurrently.

 On the other hand, thread-safe techniques are ones that provide concurrent access and

modificaƟon by many threads without risking conflicts or failures. The security and integrity

of data being sent between various network nodes are ensured in networking through the

use of thread-safe mechanisms. A data race may occur and lead to unexpected behaviour, for

instance, if two threads aƩempt to write to the same memory region concurrently. Thread-

safe techniques make sure that only one thread at a Ɵme may access a certain resource by

using synchronisaƟon mechanisms like locks, semaphores, and mutexes to prevent this.

worker threads and thread-safe techniques are critical ideas in computer networking that

assist guarantee effective and secure communication between various nodes in a network.

Performance, storage capacity, and user experience are all impacted by memory, which is a

crucial component of smartphones. Mobile devices employ a variety of memory types,

including internal storage, RAM, and external storage.

The operating system, applications, and user data are all stored on internal storage, sometimes

referred to as flash memory. Being non-volatile, it keeps the data it contains long after the

device is switched off. The type and specs of the gadget determine the internal storage's size.

The operating system and running applications are stored in volatile memory called RAM, or

random access memory. The number of applications and processes that may run concurrently

on the device depends on the RAM amount and is quicker than internal storage.

The phone's storage may be increased beyond its internal storage using external storage, such

a microSD card. It is also non-volatile and has the ability to store user data, documents, and

media files.

Memory utilisation is crucial to Android devices' performance and user interface. By giving

active applications and background processes priority, the operating system controls memory

utilisation.

Among the several uses of RAM:

1) InstallaƟon and storage of applicaƟon data: ApplicaƟons are installed, and their data is saved

in the device's internal storage.

2) Android caches app data in RAM in order to increase efficiency and decrease load Ɵmes.

3) Android requires RAM to execute background acƟviƟes and services, like push noƟficaƟons

and system upgrades.

4) Virtual memory: Android employs virtual memory to shiŌ data between RAM and internal

storage, enabling the device to manage greater quanƟƟes of data.

5) External storage: Android enables users to enhance the storage capacity of their smartphone

by uƟlising external storage such as a microSD card.

